UCF's Academic Villages Orlando, Florida

Appendix I I

Post-Tensioned Shear Calculations (sample calculations at 9')
 Steps taken from the PCI Design Handbook Precast and Prestressed Concrete $6^{\text {th }}$ Edition

Material Properties

$\mathrm{f}_{\mathrm{c}}{ }^{\prime}=5000 \mathrm{psi}$, normal - weight concrete $\Rightarrow \lambda=1$
$\mathrm{f}_{\mathrm{ci}}{ }^{\prime}=3500 \mathrm{psi}$
$\mathrm{f}_{\mathrm{pu}}=270 \mathrm{ksi}$, (low-relaxation steel)
$\mathrm{f}_{\mathrm{ps}}=240 \mathrm{ksi}$
$\mathrm{f}_{\mathrm{pe}}=148 \mathrm{ksi} \quad \Rightarrow \quad \mathrm{f}_{\mathrm{pe}}>0.4 \mathrm{f}_{\mathrm{pu}}$
f_{yv} for stirrups $=60 \mathrm{ksi}$

Sectional Properties

b=12"
$\mathrm{A}_{\mathrm{c}}=60 \mathrm{in}^{2}$
$\mathrm{I}_{\mathrm{c}}=125 \mathrm{in}^{2}$
$\mathrm{h}=5$ in
$y_{b}=2.5$
$y_{t}=2.5 \mathrm{in}$
$\mathrm{Z}_{\mathrm{b}}=50 \mathrm{in}^{3}$
$\mathrm{Z}_{\mathrm{t}}=50 \mathrm{in}^{3}$
$2 b_{w}=24$ in
Use the same value for the effective depth d_{p} for the midspan as well as other sections.

Tendon Properties

$\mathrm{e}_{\mathrm{e}}=0.5 \mathrm{in}$
$\mathrm{e}_{\mathrm{c}}=1.2$ in
$A_{p s}=18,1 / 2 \mathrm{in}(12.7 \mathrm{~mm})$ dia strands $=18 \times 0.153 \mathrm{in}^{2}=2.754 \mathrm{in}^{2}$
$F=f_{p e} . A_{p s}=148 \mathrm{ksi} \times 2.754 \mathrm{in}^{2}=407.6 \mathrm{kips}$
$\mathrm{k}_{\mathrm{b}}=\mathrm{Z}_{\mathrm{t}} / \mathrm{A}_{\mathrm{c}}=.833 \mathrm{in}$
$\mathrm{k}_{\mathrm{b}}=\mathrm{Z}_{\mathrm{t}} / \mathrm{A}_{\mathrm{c}}=.833 \mathrm{in}$
Assuming • $=0.8$
$\eta=f_{p e} / f_{p i}=F / F_{i}=0.8$

Factored Loads

Factored dead load, superimposed dead load and live load:
$\mathrm{w}_{\mathrm{u}}=1.2\left(\mathrm{w}_{\mathrm{D}}+\mathrm{w}_{\mathrm{SDL}}\right)+1.6\left(\mathrm{w}_{\mathrm{L}}\right)=1.2(100)+1.6(140)=2615 \mathrm{plf}=2.615$ kip/ft

Factored superimposed dead load and live load:
$\cdot \mathrm{w}_{\mathrm{u}}=1.2\left(\mathrm{w}_{\mathrm{SDL}}\right)+1.6\left(\mathrm{w}_{\mathrm{L}}\right)=1.2 \times(80)+1.6 \times(100)=1392 \mathrm{plf}=1.392$ kip/ft

ACI EQUATIONS

$\mathrm{e}_{0 @ 9 f t}=0.9^{\prime \prime}$
$\mathrm{d}_{\mathrm{p} @ 9 f t}=\mathrm{e}_{0 @ y f t}+\mathrm{y}_{\mathrm{t}}=3.4$
For equation used in elaborate approach, d_{p} is limited by $0.8 h=0.8 \times 5=$ 4 in
Taking $d_{\text {p@mid }}$ as mentioned in the question to be $d_{p @ 9 f t}$, we have
$\mathrm{d}_{\text {p@9ft }}=4$ in

Computation of the Flexure - Shear Resistance:

(Flexure - shear stress resistance
$v_{c i}=0.6 \lambda \sqrt{f_{c}^{\prime}}+\frac{V_{G}}{b_{w} d_{p}}+\left(\frac{\Delta V_{u} \times \Delta M_{c r}}{\Delta M_{u}}\right) \frac{1}{b_{w} d_{p}} \geq 1.7 \lambda \sqrt{f_{c}^{\prime}}$
Flexure - shear force resistance

$$
V_{c i}=0.6 \lambda \sqrt{f_{c}^{\prime}} b_{w} d_{p}+V_{G}+\left(\frac{\Delta V_{u} \times \Delta M_{c r}}{\Delta M_{u}}\right) \geq 1.7 \lambda \sqrt{f_{c}^{\prime}} b_{w} d
$$

where $V_{G}=$ shear force due to self - weight of member at section considered

$$
=w_{G}\left(\frac{l}{2}-x\right)=1.019 \mathrm{kips} / \mathrm{ft}(12-9) \mathrm{ft}=26.5 \mathrm{kip}
$$

- $\mathrm{V}_{\mathrm{u}}=$ factored shear force due to superimposed dead load plus live load at section considered under same loading as $\cdot M_{u}$

$$
=\Delta w_{u}\left(\frac{l}{2}-x\right)=1.392 \mathrm{kips} / \mathrm{ft}(12-9)=36.2 \mathrm{kip}
$$

- $\mathrm{M}_{\mathrm{u}}=$ factored bending moment due to superimposed dead load plus live load at section considered $=\Delta w_{u} \frac{x(l-x)}{2}=1.392 \times 9(24-9) / 2=382.104$ kip-ft $=4582$ kip-in
$\mathrm{M}_{\mathrm{G}}=$ moment due to self weight of member $=w_{G} \frac{x(l-x)}{2}=1.019 \times 9(24-$ 9)/2

$$
=279.72 \text { kip-ft = } 3357 \text { kip-in }
$$

- $\mathrm{M}_{\mathrm{cr}}=$ moment in excess of self - weight moment, causing flexural cracking in the precompressed tensile fiber at section considered $=\mathrm{M}_{\mathrm{cr}}$ M_{G}
$=Z_{b}\left[6 \sqrt{f_{c}^{\prime}}+\frac{F}{A_{c}}\left(1+\frac{e_{o} A_{c}}{Z_{b}}\right)\right]-M_{G}$
$=5179 \mathrm{kip}-\mathrm{in}$

Therefore:

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
v_{c i}=0.6 \times 1 \times \sqrt{5000} p s i+\frac{26.5 \mathrm{kip} \times 1000 .}{12.5 \mathrm{in} \times 30 \mathrm{in}}+\left(\frac{36.2 \mathrm{kip} \times 5179 \mathrm{kip}-\mathrm{in}}{4582 \mathrm{kip}-\mathrm{in}}\right) \frac{1000}{12.5 \mathrm{in} \times 30 \mathrm{in}} \\
=42.426 \mathrm{psi}+179.778 \mathrm{psi}=222 \mathrm{psi} \geq 1.7 \lambda \sqrt{f_{c}^{\prime}}=120 \mathrm{psi}
\end{array}\right. \\
\left\{\begin{array}{l}
V_{c i}=0.6 \times 1 \times \sqrt{5000} \text { psi } \times 12.5 \mathrm{in} \times 30 \mathrm{in}+\left[25.6+\left(\frac{36.2 \mathrm{kip} \times 5179 \mathrm{kip}-\mathrm{in}}{4582 \mathrm{kip}-\mathrm{in}}\right)\right] 1000 \\
=15910 \mathrm{lb}+66517 \mathrm{lb}=82427 \mathrm{lb}=82.4 \mathrm{kip} \geq 1.7 \lambda \sqrt{f_{c}^{\prime}} b_{w} d_{p}=45 \mathrm{kip}
\end{array}\right.
\end{array}\right.
$$

$\mathrm{V}_{\mathrm{p}}=$ vertical component of prestressing force at section considered
$=$ Fsin• = 10083 lb
Therefore:
$\left\{\begin{array}{l}v_{c w}=3.5 \times 1 \times \sqrt{5000} p s i+0.3 \times 417 p s i+\frac{10083 \mathrm{lb}}{12.5 \mathrm{in} \times 30 \mathrm{in}}=400 \mathrm{psi} \\ V_{c w}=(3.5 \times 1 \times \sqrt{5000} p s i+0.3 \times 417 \mathrm{psi}) \times 12.5 \mathrm{in} \times 30 \mathrm{in}+10083 \mathrm{lb}=150 \mathrm{kip}\end{array}\right.$
The shear resistance is the smaller of $\mathrm{v}_{\mathrm{ci}}\left(\mathrm{V}_{\mathrm{ci}}\right)$ and $\mathrm{v}_{\mathrm{cw}}\left(\mathrm{V}_{\mathrm{cw}}\right)$ at 9 ft .

Therefore nominal shear strength provided by concrete, $\mathrm{v}_{\mathrm{c}}=222 \mathrm{psi}$ (or $\mathrm{V}_{\mathrm{c}}=82.4$ kip)

Computation of Design Shear Strength

$V_{u}=$ Design shear force resulting from factored loads

$$
=w_{u}\left(\frac{l}{2}-x\right)=2.615 \frac{k i p}{f t}(35-9) f t=68 k i p=68000 \mathrm{lb}
$$

Therefore:

$$
\left\{\begin{array}{l}
\frac{V_{u}}{\phi}=\frac{68000 \mathrm{lb}}{0.75}=90667 \mathrm{lb} \\
\frac{v_{u}}{\phi}=\frac{V_{u}}{\phi b_{w} d_{p}}=\frac{68000 \mathrm{lb}}{0.75 \times 12.5 \mathrm{in} \times 30 \mathrm{in}}=242 \mathrm{psi}
\end{array}\right.
$$

The value of V_{u} / ϕ (or v_{u} / ϕ) is to be compared to $\mathrm{V}_{\mathrm{c}} / 2$ (or $\mathrm{v}_{\mathrm{c}} / 2$) and V_{c}. (or v_{c}) As $V_{u} / \phi=90667 \mathrm{lb}$ (or $v_{u} / \phi=242 \mathrm{psi}$) is more than $V_{c} / 2$ (or $\mathrm{v}_{\mathrm{c}} / 2$) as well as V_{c} (or V_{c}) the nominal shear strength to be provided by the shear reinforcement,

$$
\left\{\begin{array}{l}
V_{s}=\frac{V_{u}}{\phi}-V_{c}=90667 \mathrm{lb}-82427 \mathrm{lb}=8240 \mathrm{lb}<8 \lambda \sqrt{f_{c}^{\prime}} b_{w} d_{p}=212132 \mathrm{lb} \\
v_{s}=\frac{v_{u}}{\phi}-v_{c}=242 p s i-222 p s i=20 p s i<8 \lambda \sqrt{f_{c}^{\prime}}=566 \mathrm{psi}
\end{array} .\right.
$$

Therefore there is no need to change concrete cross-section (i.e., larger $b_{w} d_{p}$)

$$
\begin{aligned}
& A_{v}=\frac{\left(V_{u} / \phi-V_{c}\right) s}{f_{v y} d} \Rightarrow \frac{\left(V_{u} / \phi-V_{c}\right)}{d}=\frac{A_{v} f_{v y}}{s}=275 \mathrm{lb} / \mathrm{in} \\
& \text { If } \quad s=12 \mathrm{in}, \quad\left\{\begin{array}{l}
>3 \mathrm{in} \\
\leq 0.75 \mathrm{~h}=0.75 \times 30=22.5 \mathrm{in} \quad \text { HenceOK } \\
\leq 24 \mathrm{in}
\end{array}\right. \\
& A_{v}=\frac{275 \mathrm{lb} / \mathrm{in} \times 12 \mathrm{in}}{60000 \mathrm{psi}}=0.055 \mathrm{in}^{2}
\end{aligned}
$$

Hence the amount of excess shear can be provided by using welded wire reinforcement W2.9 ($\mathrm{A}_{v}=0.058 \mathrm{in}^{2} / \mathrm{ft}$), at a spacing of 12 in.

